اللهم صل علی محمد و آل محمد و عجل الفرجهم.............. فیزیک دبیرستان رضا زارعی

اللهم صل علی محمد و آل محمد و عجل الفرجهم.............. فیزیک دبیرستان رضا زارعی
نمونه سوالات فصل به فصل فیزیک دبیرستان 
نويسندگان
لینک دوستان

تبادل لینک هوشمند
برای تبادل لینک  ابتدا ما را با عنوان physic و آدرس zarey.physic.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.





  1. فيزيك هسته اي

برای بررسی تاریخچه فیزیک هسته‌ای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان می‌کردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» می‌باشد اقتباس کردند. این حدس و گمان دانشمندان یونانی حدود هزار سال دوام آورد، چند دهه طول کشید که نظریه غیر قابل تجزیه بودن اتم رد شد. اولین و اساسی‌ترین نتیجه تحقیقات ثابت کرد که اتم شامل دو جزء اصلی می‌باشد:



هسته سنگین که تقریبا تمام جرم اتم را در خود دارد.


پوسته‌ای سبک که از ذرات الکتریسیته (الکترون) ساخته شده است. این الکترونها با سرعت فوق العاده زیادی به دور هسته در حرکت بوده و هرگز به روی آن سقوط نمی‌کنند.
ساختار هسته
تا آنجا که به ساختار هسته‌ای مربوط است می‌توان هسته اتم را به عنوان یک جرم نقطه‌ای و یک بار نقطه‌ای در نظر گرفت.
هسته ، شامل تمامی بار مثبت و تقریبا تمامی جرم اتم است، در نتیجه مرکزی را تشکیل می‌دهد که الکترونها حول آن می‌چرخند.

                        

 

 

 

 

 

 

 

 

 

 

شکافت هسته‌ای


در واکنشهای شکافت هسته‌ای مقادیر زیادی نیز انرژی آزاد می‌گردد (در حدود 200Mev)، اما مسئله مهمتر اینکه نتیجه شکستن هسته 235U ، آزادی دو نوترون است که می‌تواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد. این چهار نوترون نیز چهار هسته 235U را می‌شکند. چهار هسته شکسته شده تولید هشت نوترون می‌کنند که قادر به شکستن همین تعداد هسته اورانیوم می‌باشند. سپس شکست هسته‌ای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد. در هر دوره تعداد نوترونها دو برابر می‌شود، در یک لحظه واکنش زنجیری خود بخودی شکست هسته‌ای شروع می‌گردد. در واکنشهای کنترل شده هسته‌ای تعداد شکست در واحد زمان و نیز مقدار انرژی بتدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته می‌شود.

انرژی شکافت هسته‌ای
کشف انرژی هسته‌ای در جریان جنگ جهانی دوم صورت گرفت و اکنون برای شبکه برق بسیاری از کشورها هزاران کیلو وات تهیه می کند (نیروگاه هسته ای). بحران انرژی بر اثر بالارفتن قیمت نفت در سال 1973 استفاده از انرژی شکافت هسته‌ای بیشتر وارد صحنه کرد. در حال حاضر ممالک اروپایی انرژی هسته‌ای را تنها انرژی می‌داند. که می‌تواند در اکثر موارد جایگزین نفت شود. استفاده از انرژی شکافت هسته‌ای که بر روی یک ماده قابل احتراق کانی که بصورت محدود پایه گذاری می‌شود. برای سایر کشورها خطرات بسیار دارد در حال حاضر تولید الکتریسته با استفاده از شکافت هسته‌ای کنترل شده به میزان زیادی توسعه یافته و مورد قبول واقع شده است. تولید انرژی هسته‌ای در کشورهای توسعه یافته بخش مهمی از طرح انرژی ملی را تشکیل می‌دهد.

انرژی بستگی هسته‌ای
می‌توان تصور کرد که جرم هسته ، M ، با جمع کردن Z (تعداد پروتونها) ضربدر جرم پروتون و N تعداد نوترونها ضربدر جرم نوترون بدست می‌آید.



M = Z×Mp + N×Mn

از طرف دیگر M همیشه کمتر از مجموع جرمهای تشکیل دهنده‌های منزوی هسته است. این اختلاف به توسط فرمول انیشتین توضیح داده می‌شود که رابطه بین جرم و انرژی هم ارزی جرم و انرژی را برقرار می‌سازد. اگر یک دستگاه مادی دارای جرم باشد در این صورت دارای انرژی کلی E است. E = M C2 که در آن C سرعت نور در خلا و M جرم کل هسته مرکب از نوکلئونها و E مقدار انرژیی است که در اثر فروپاشی جرم M تولید می‌شود. بنابر این اصول انرژی هسته‌ای بر آزاد سازی انرژی پیوندی هسته استوار است. هر سیستمی که دارای انرژی پیوندی بیشتر باشد پایدار می‌باشد. در واقع جرم مفقود شده در واکنشهای هسته‌ای طبق فرمول E = M C2 به انرژی تبدیل می‌شود. پس انرژی بستگی اختلاف جرم هسته و جرم نوکلئونهای تشکیل دهنده آن است، که معرف کاری است که باید انجام شود تا نوکلئونها از هم جدا شوند.
مواد شکافتنی
مواد ناپایدار برای اینکه به پایداری برسند، انرژی گسیل می‌کنند تا به حالت پایدار برسد. معمولا عناصری شکافت پذیر هستند که جرم اتمی آنها بالای 150 باشد ،235U و 238U در معادن یافت می‌شود. 99.3 درصد اورانیوم معادن 238U می‌باشد.و تنها 7 / 0درصدآن 235U می‌باشد. از طرفی 235U با نوترونهای کند پیشرو واکنش نشان می‌دهد. 238Uتنها با نوترونهای تند کار می‌کند، البته خوب جواب نمی‌دهد. بنابر این در صنعت در نیروگاههای هسته‌ای 235U به عنوان سوخت محسوب می‌شود. ولی به دلایل اینکه در طبیعت کم یافت می‌شود. بایستی غنی سازی اورانیوم شود، یعنی اینکه از 7 /0درصد به 1 الی 3 درصد برسانند.

شکافت 235U
در این واکنش هسته‌ای وقتی نوترون کند بر روی 235U برخورد می کند به 236U تحریک شده تبدیل می‌شود. نهایتا تبدیل به باریوم و کریپتون و 3 تا نوترون تند و 177 Mev انرژی آزاد می‌شود. پس در واکنش اخیر به ازای هر نوکلئون حدود 1 Mev انرژی آزاد می‌شود. در واکنشهای شیمیایی مثل انفجار به ازای هر مولکول حدود 30 Mev انرژی ایجاد می‌شود. لازم به ذکر است در راکتورهای هسته‌ای که با نوترون کار می‌کند، طبق واکنشهای به عمل آمده 2 الی3 نوترون سریع تولید می‌شود. حتما این نوترونهای سریع باید کند شوند.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. همجوشي هسته اي

به نام خداي متعال كه منزه است از شرك مشركان

از ديرباز آرزوي بشر دستيابي به منبعي از انرژي بوده كه علاوه بر آنكه بتواند مدت مديدي از آن استفاده كند توليد پسماندهاي خطر ناك نيز در پي نداشته باشد.اكنون در هزاره سوم ميلادي اين آرزوي به ظاهر دست نيافتني كم كم به واقعيت مي پيوندد.اكنون بشر خود را آماده مي كند تا با ساخت اولين رآكتور گرما هسته اي (همجوشي هسته اي)آرزوي نياكان خود را تحقق بخشد.سوختي پاك و ارزان به نام هيدروژن,انرژي توليدي اي سرشار و پسماندي بسيار پاك به نام هليوم.

اكنون مي پردازيم به واكنشهاي گرما هسته اي راهكارهاي استفاده از آن.

خورشيد و ستارگان:

سالهاست كه دانشمندان واكنشي را كه در خورشيد و ستارگان رخ داده و در آن انرژي توليد مي كند كشف كرده اند.اين واكنش عبارت است از تركيب (برخورد) هسته هاي چهار اتم هيدروژن معمولي و توليد يك هسته اتم هليوم.اما مشكلي سر راه اين نظريه است.

بالا ترين دمايي كه در خورشيد وجود دارد مربوط به مركز آن است كه برابر 15ضرب در 10 به توان6 مي باشد.در حالي كه در ستارگان بزرگتر اين دما به 20 ضرب در ده به توان 6 مي رسد.به همين خاطر تصور بر اين است كه آن واكنش معروف تركيب چهار اتم هيدروژن معمولي وتوليد يك اتم هليم در ساير ستارگان بزرگ نيست كه باعث توليد انرژي مي شود.بلكه احتمالا چرخه كربن در آنها به كمك آمده و كوره آنها را روشن نگه مي دارد.منظور از چرخه كربن آن چرخه اي نيست كه روي زمين اتفاق مي افتد.بلكه به اين صورت است كه ابتدا يك اتم هيدروژن معمولي با يك اتم كربنC12تركيب مي شود(همجوشي) و يك اتم N13 به علاوه يك واحد گاما را آزاد مي كند.بعد اين اتم با يك واپاشي به يك اتمC13به علاوه يك پوزيترون ويك نوترينو تبديل مي شود.بعد اينC13دوباره با يك اتم هيدروژن تركيب مي شود وN14و يك واحد گاما حاصل مي شود.دوباره در اثر تركيب اين نيتروژن با يك هيدروژن معمولي اتمO15و يك واحد گاما توليد مي شود.O15واپاشي كرده و N15به علاوه يك پوزيترون ويك نوترينو را بوجود مياورد.و دست آخر با تركيب N15با يك هيدروژن معموليC12به علاوه يك اتم هليوم بدست مي آيد.



ديديد كه در اين چرخه C12نه مصرف شد و نه به وجود آمد بلكه فقط نقش كاتاليزور را داشت.اين واكنشها به ترتيب و پشت سر هم انجام مي شوند.و واكنش اصلي همان تبديل چهار اتم هيدروژن به يك اتم هليوم است.مزيت چرخه كربن اين است كه سرعت كار را خيلي بالا مي برد. ولي اشكالي كه دارد اين است كه در دماي حد اقل20 ضرب در ده به توان6 شروع مي شود.بنا بر اين احتمال زيادي ميرود كه در ستاره هاي بزرگتر چرخه كربن باعث توليد انرژي مي شود.

محصور سازي

يك تعريف ساده و پايه اي از همجوشي عبارت است از فرو رفتن هسته هاي چند اتم سبكتر و تشكيل يك هسته سنگينتر.مثلا واكنش كلي همجوشي كه در خورشيد رخ ميدهد عبارت است از برخورد هسته هاي چهاراتم هيدروژن وتبديل آنها به يك اتم هليوم .

تا اينجا ساده به نظر ميرسد ولي مشكلي اساسي سر راه است;مي دانيدهسته ازذرات ريزي تشكيل شده است كه پروتون ونوترون جزءلاينفك آن هستند.نوترون بدون بار وپروتون بابارمثبت كه سايربارهاي مثبت رابه شدت ازخودميراند.مشكل مشخص شد؟ بله…اگرپروتونها(هسته هاي هيدروژن)يكديگررادفع ميكنندچگونه ميتوان آنهارادرهمجوشي شركت داد؟

همانطوركه حدس زديد راه حل اساسي آن است كه به اين پروتونهاآنقدرانرژي بدهيم كه انرژي جنبشي آنهابيشترازنيروي دافعه كولني آنهاشود و پروتونها بتوانند به اندازه كافي به هم نزديك شوند.حال چگونه اين انرژي جنبشي را توليد كنيم؟گرما راه حل خوبيست.در اثر افزايش دما جنب و جوش وبه عبارت ديگرانرژي جنبشي ذرات بيشتر و بيشتر ميشود به طوري كه تعداد برخوردها و شدت آنها بيشتر و بيشتر ميشود.به نظر شما آيا ديگر مشكلي وجود ندارد؟ خير,مسئله اساسيتري سر راه است.

يك سماور پر از آب را تصور كنيد.وقتي سماور را روشن مي كنيد با اين كار به آب درون سماور گرما ميدهيد(انرژي منتقل مي كنيد).در اثر اين انتقال انرژي دماي آب رفته رفته بالاتر مي رود و به عبارتي جنب و جوش مولكولهاي آب زياد مي شود.در اين حالت بين مولكولهاي آب برخوردهايي پديد مي آيد.هر مولكول كه از شعله(يا المنت يا هر چيز ديگري)مقداري انرژي دريافت كرده است آنقدر جنب و جوش مي كند تا بالاخره (به علت محدود بودن محيط سماور و آب)انرژي خود رابه ديگري بدهد.مولكول بعدي نيز به نوبه خود همين عمل را انجام ميدهد.بدين ترتيب رفته رفته انرژي منبع گرما در تمام آب پخش مي شود و دماي آب بالا ميرود.خوب يك سوال:آيا وقتي بدنه سماور را لمس مي كنيم هيچ گرمايي حس نمي كنيم؟…بله حس ميكنيم.دليلش هم كه روشن است.برخورد مولكولهاي پر انرژي آب با بدنه سماور و انتقال انرژي خود به آن.هدف ما از روشن كردن سماور گرم كردن آب بود نه سماور.اميدوارم تا اينجا پاسخ اولين مشكل اساسي بر سر راه همجوشي را دريافت كرده باشيد.بله اگر اگر با صرف هزينه و زحمت بالا سوخت را به دمايي معادل ميليونها درجه كلوين برسانيم آيا اين اتمها آنقدر صبر خواهند كرد تا با ديگر اتمها وارد واكنش شوند يا در اولين فرصت انرژي بالاي خود را به ديواره داده وآن را نا بود ميكند؟(...شما بوديد چه مي كرديد؟؟؟...).بنابر اين نياز به ((محصور سازي))داريم;يعني بايد به طريقي اجازه ندهيم كه اين گرما به ديواره منتقل شود.

رسيدن به دماي بالا:

شروع واكنش همجوشي به دماي بسيار بالايي نيازمند است.درست است كه دماي پانزده ميليون درجه دماي بسيار بالايست و تصور بوجود آوردنش روي زمين مشكل و كمي هم وحشتناك مي باشد ولي معمولا در زندگي روزمره دور و برمان دماهاي خيلي بالايي وجود دارند و ما از آنها غافليم.مثلا وقتي در اثر اتصالي سيمهاي برق داخل جعبه تقسيم ميسوزد وشما صداي جرقه آنرا ميشنويد و پس از بررسي متوجه مي شويد كه كاملا ذوب شده فقط به خاطر دماي وحشتناكي بوده كه آن تو به وجود آمده.شايد باور نكنيد ولي اين دما به حدود سي-چهل هزار درجه كلوين ميرسد.البته اين دما براي همجوشي حكم طفل ني سواري را دارد.يا اينكه مي توانيم با استفاده از ولتاژ هاي بسيار بالا قوسهاي الكتريكي را از درون لوله هاي مويين عبور بدهيم.به اين ترتيب دماي هواي داخل لوله كه اكنون به پلاسما تبديل شده به نزديك چند ميليون درجه مي رسد.(كه باز هم براي همجوشي كم است).يكي از بهترين راهها استفاده از ليزر است.مي دانيد كه ليزرهايي با توانهاي بسيار بالا ساخته شده اند.مثلا نوعي از ليزر به نام ليزر نوا(NOVA)مي تواند در مدت كوتاهي انرژي اي معادل ده به توان پنج ژول توليد كند.اما بازهم در كنار هر مزيت معايبي هست.مثلا اين ليزر تبعا انرژي زيادي مصرف ميكند كه حتي با صرف نظر از آن مشكل ديگري هست كه ميگويد اگر انرژي توليدي ليزر در آن مدت كوتاه بايد تحويل داده بشود پس براي برقرار ماندن معيار لاوسن (حالا كه مدت زمان محصور سازي پايين آمده)بايد چگالي بالا تر برود.كه در اين مورد از تراكم و چگالي جامد هم بالا تر ميرود.

انواع واكنشها:

براي بهينه سازي كار رآكتورهاي همجوشي و افزايش توان خروجي آنها راههاي متعددي وجود دارد.يكي از اين راهها انتخاب نوع واكنشيست كه قرار است در رآكتور انجام بشود.

ظبق تصوير زير نوعي از واكنش همجوشي بصورتيست كه در آن دو هسته سبك با يكديگر واكنش داده و يك هسته سنگين تر را بوجود مياورند.يعني حاصل تركيب دو هسته دوتريم و توليد يك هسته ترتيم به علاوه يك هسته هيدروژن معموليست. اين واكنش انرژي ده مي باشد.چون تفاوت انرژي بستگي هسته سنگين تر وهسته هاي سبكتر مقداري منفيست.

در اين واكنش مقدار انرژي اي توليدي برابر4MeVمي باشد.

قبلا گفته شد كه بايد براي انجام همجوشي هسته ها به اندازه كافي به هم نزديك بشوند.اين مقدار كافي حدودا معادل3fmمي باشد.چون در اين فاصله ها انرژي پتانسيل الكترواسناتيكي دو دوترون در حدود 0.5MeVهست پس مي توانيم با اين مقدار انرژي دادن به يكي از دوترونها دافعه كولني بين دوترونها ر شكسته و واكنش را شروع كنيم كه بعد از انجام مقدار4.5MeVتوليد مي شود.(0.5MeVانرژي جنبشي به علاوه 4MeVانرژي آزاد شده)

همانطور كه مي بينيد بهترين گزينه واكنش سوم مي باشد


مي توانيم رآكتور خود را طوري طراحي كنيم كه دور ديواره بيروني آن ليتيم مايع تحت فشار جريان داشته باشد.اين ليتيم مايع گرماي توليدي اضافي را از واكنش گرفته و به آب منتقل مي كند و با تبديل آن به بخار باعث مي شود كه توربين و ژنراتور به حركت درآيند و برق توليد بشود.

اما چرا ليتيم؟

قبلا ديديد كه مقرون به صرفه ترين واكنش در رآكتور همجوشي واكنش دوتريم . ترتيم است.در اين واكنش ديديد كه يك نوترون پر انرژي توليد مي شد.اين مساله يعني نوترون زايي مي تواند سبب تضعيف بخشهايي از رآكتور شود.از طرفي براي محيط زيست و مخصوصا سلامتي كساني كه در اطراف رآكتور فعاليت مي كنند بسيار مضر است.اما اگر ليتيم را به عنوان خنك كننده داشته باشيم اين جريان ليتيم همچنين نقش مهم كند كنندگي را بازي خواهد كرد.به اين صورت كه با نوترون اضافي توليد شده در واكنش تركيب شده و سوخت گران قيمت و بسيار كمياب رآكتور رو كه همان ترتيم است توليد مي كند.واكنش دقيق آن به شكل زير است.البته در اين مورد بايد ضخامت ليتيم مايع در جريان حداقل يك متر باشد.

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. ادامه

انواع رآكتور:

توكامك يكي از انواع رآكتورهاي همجوشي هسته ايست كه عمل محصورسازي را به خوبي انجام ميدهد.طرح توكامك در دهه پنجاه ميلادي توسط روسها پيشنهاد شد.كلمه توكامك از كلمات "toroidalnaya", "kamera", and "magnitnaya" به معني " اتاقك مغناطيسي چنبره اي" گرفته شده است.

يكي از دلايل و توجيحاتي كه براي چنبره اي بودن محفظه هاي محصور سازي مي شود بيان كرد اين است كه : توپ پر مويي را تصور كنيد كه شما قصد داريد موهاي اين توپ را شانه بزنيد. شما هر طور و از هر طرف كه بخواهيد اين كار بكنيد هميشه دو طرف از موهاي توپ شانه نشده و نامنظم باقي مي ماند.حال به جاي توپ فرض كنيد كه يك كره مغناطيسي داريم .ميخواهيم كه بردارهاي ميدان در سراسر اطراف اين كره يكنواخت و منظم باشند(در واقع همه در يك جهت باشند).بنا به مثال اين كار غير ممكن بوده ونا منظمي در دو طرف كره باعث عدم پايداري محصور ساز مي شود.ولي در يك محصور ساز چنبره اي چنين مشكلي وجود ندارد و يكنواختي ميدان سراسر محصور ساز(توكامك)باعث پايداري آن مي شود.مهم ترين و حياتي ترين وظيفه يك ابزار همجوشي پايدار نگه داشتن پلاسما است.

اسفرومك نوع ديگري از رآكتورهاي همجوشي هسته ايست.

اسفرومك نوع ديگري از رآكتورهاي همجوشيست كه بر خلاف توكامك كه چنبره ايست شكلي كروي دارد.البته تفاوت اسفرومك با توكامك در اين است كه در مركز اسفرومك هيچ جسم مادي اي وجود ندارد.

اسفرومك متاسفانه با بي مهري مواجه شد و به اندازه توكامك مورد توجه واقع نشد.در حالي كه اسفرومك مدت زيادي بعد از توكامك اختراع شد.

در دهه گذشته اغلب تحقيقات در بخش انرژي همجوشي مغناطيسي روي توكامك چنبره اي شكل براي رسيدن به واكنشهاي همجوشي در سطح بالا متمركز شده است.

كار توكامك در ايالات متحده وخارج آن ادامه دارد ولي سازمان دانشمندان انرژي همجوشي در حال بازديد از اسفرومك هستند.

قسمت زيادي از علاقه تجديد شده به پروژه اسفرومك روي تحقيقات فعالي در لاورنس ليورمور در گروهي به نام SSPX (Sustained Spheromak Physics Experiment) متمركز شده است.SSPX در 14ژوئن 1999 در مراسمي با حضور نماينده اي از DOE و با همكاري دانشمنداني از Sandia و آزمايشگاه ملي لس آلاموس آغاز به كار كرد.SSPX يك سري از از آزمايشات است كه براي اين طراحي شده كه توانايي اسفرومك را در اين مورد كه اسفرومك چقدر اين كيفيت را داراست كه پلاسما هاي داغ سوخت همجوشي را درون خود داشته باشد مشخص كند .

به عقيده رهبر پروژه SSPX آقاي David Hill توكامك با دماي بالايي كه در آن قابل دسترسيست (بيشتر از 100ميليون درجه سلسيوس كه بارها بيشتر از دماي مركز خورشيد است)فعلا برنده جريان رهبري پروژه هاي همجوشي به حساب مي آيد.با اين حال ميدانهاي مغناطيسي توكامك بوسيله كويل (سيم پيچ) هاي بيروني بسيار بزرگ كه چنبره رآكتور را كاملا احاطه مي كنند توليد مي شوند.اين كويل هاي بسيار بزرگ هزينه بسيار زياد و بي نظمي و اختلالاتي در كار رآكتور خواهند داشت.

در حالي كه اسفرومك ها پلاسماي بسيار داغ را در يك سيستم ميدان مغناطيسي ساده و فشرده كه فقط از يك سري ساده از كويل هاي كوچك پايدار كننده استفاده ميكند بوجود مي آورد.ميدانهاي مغناطيسي قوي لازم درون پلاسما با چيزي كه دينام مغناطيسي ناميده مي شود توليد مي شوند.

انرژي ده كردن:

مي دانيد درنوعي از رآكتورهاي شكافت هسته اي بوجود آوردن زنجيره واكنشها بوسيله برخورد دادن يك نوترون پر انرژي با هسته يك اتم اورانيم235 انجام مي شود.به اين صورت كه وقتي كه اين نوترون وارد هسته اتم اورانيوم235 مي شود آن را به يك هسته اورانيم236 تبديل ميكند.از آنجا كه اين هسته ناپايدار است به سرعت واپاشي مي كرده و اتمهاي سبكتري به همراه سه نوترون پر انرژي ديگر را توليد مي كند.

توضيح كاملتر اينكه در هسته هاي سنگين پايدار مثل اورانيوم بين نيروهاي الكترواستاتيكي كه مايل هستند ذرات تشكيل دهنده اتم را از هم دور كنند و نيروي هسته اي كه آنها را كنار هم نگه ميدارد تعادل بسيار حساسي وجود دارد كه اين تعادل رو مي توانيم براحتي و به روشي كه گفته شد به هم زده و واكنش شكافت هسته اي را شروع كنيم.واكنش حاصل از يك اتم با توليد كردن سه نوترون پر انرژي ديگر باعث ميشود سه اتم اورانيم ديگر وارد واپاشي بشوند.به همين ترتيب واكنش اصطلاحا زنجيره اي ميشود.

قدر مسلم يك رآكتور همجوشي ايده آل رآكتوريست كه در آن واكنشهاي زنجيره اي داريم. در واقع هدف اساسي در راه ساخت رآكتور همجوشي هسته اي زنجيره اي كردن آن است.اگر قرار باشد كه ما در اين راه انرژي صرف كنيم تا يك مقدار كمتر از آن را بدست بياوريم مطمئنا اين واكنش نه زنجيره ايست نه مفيد.دانشمندان اين رشته مفهومي به نام گيرانش را تعريف كرده اند كه به معني اين است كه مقداري انرژي صرف شروع واكنش كنيم و انرژي بيشتر از سلسله واكنشها بگيريم.در واقع در شرايط گيرانش واكنش زنجيره اي ميشود.يعني نه تنها انرژي توليدي يك واكنش براي انجام واكنش بعد كافيست بلكه مقدار زيادي از آن هم اضافه است وميتواند در اختيار ما براي توليد برق قرار بگيرد.

اگر بخواهيم توكامك يا هر وسيله ديگر كه همجوشي در آن انجام مي شود توان مفيد داشته باشد يعني به ما انرژي بدهد بايد شرايط خاصي داشته باشد. براي آنكه احتمال برخورد ذرات(يونهاي) نامزد همجوشي بالا برود اولا بايد دماي خيلي بالايي درون آن توليد بشود و رآكتور هم بتواند بخوبي دماي بالا را تحمل كند.(اين دما در محدوده ده به توان هشت درجه كلوين مي باشد!)دوما رآكتور بايد اين توانايي را داشته باشد كه درونش چگالي زياد از يونها را وارد كرد و سوم اينكه زمان محصور سازي در آن طولاني باشد.

دماي بالا براي آن است كه بتوانيم تقريبا مطمئن باشيم كه مي توانيم از سد محكم پتانسيل كولني هسته ها بگذريم.چگالي زياد هم براي اين است كه هر چه بيشتر احتمال برخورد هاي كارا بالا برود.

در اين مسير قانوني وجود دارد كه نام آن معيار لاوسون است.به كمك اين معيار مي شود محاسبه كرد كه آيا شرايط طوري هست كه واكنش به گيرانش برسد يا نه.

معيار لاوسن = بايد: مقدار چگالي*مدت زمان محصور سازي > ده به توان20ذره در متر مكعب باشد تا اين واكنش به گيرانش برسد(البته بستگي مستقيم با دماي پلاسما دارد)

اما به طور دقيق تر:

براي رسيدن به شرايط مطلوب درواكنشهاي گرما هسته اي كه در آنها از سوخت دوتريم - ترتيم استفاده مي شود دماي پلاسما (T) بايد در محدوده يك الي سه ضرب در ده به توان هشت درجه كلوين و زمان محصورسازي(تي اي)(تي انديس E) بايد در حدود يك الي سه ثانيه و چگالي (n) بايد حوالي يك الي سه ضرب در ده به توان بيست ذره بر متر مكعب باشد.براي آغاز به كار رآكتور يعني براي رسيدن به كمينه دماي حدود ده به توان هشت كلوين بايد از وسيله گرما ساز كمكي استفاده كرد.بعد از محترق شدن سوخت مخلوط پلاسما باذرات آلفايي كه در اثر احتراق اوليه بوجود اومده اند گرم شده و مي توانيم دستگاه كمكي را از مدار خارج كنيم.از آن به بعد سرعت فعاليتهاي همجوشي با افزايش دادن چگالي پلاسما افزايش پيدا مي كند.با اين وجود افزايش چگالي به بالاي مرزهاي تعيين شده و مطمئن به معني به هم خوردن پايداري پلاسما و يا اينكه خاموش شدن رآكتور را در پي خواهد داشت يا فاجعه.به عبارت ديگه (در صورت افزايش چگالي پلاسما) براي پايدار كردن پلاسما زمان محصور سازي و دماي احتراق و صد البته حجم پلاسما و نقطه پايداري پلاسما با افزايش چگالي بالا تر رفته و شرايط را براي كار سخت تر مي كند.به حالت تعادل در آوردن اين ملزمات با شكل بندي رآكتور در كوچكترين اسپكت ريتو كه به شكل بندي مغناطيسي آن بستگي دارد مقدور ميشود


نسبت R به a را اسپكت ريتو مي گويند.

خروج پسماندها:

طبق شكل زير كه تصويري از سطح مقطع رآكتور مي باشد نحوه كنترل و خارج كردن پسماندهاي واكنش كه همان هليوم باشند را مشاهده مي كنيد.


واقعيت:

ITERاسم مجموعه ايست كه اولين رآكتور همجوشي جهان را كه از نوع توكامك خواهد بود در فرانسه خواهند ساخت.اين مجموعه متشكل است از كشورهاي: روسيه اروپا ژاپن كانادا چين ايالات متحده و جمهوري كره. آنها در اين راه از فوق هادي ها براي قسمت هاي مغناطيسي رآكتور استفاده مي كنند.توان خروجي اين توكامك 410 مگا وات خواهد بود.

نقل از سایت هوپا

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. بمباران نوترونی



    پیشرفت فیزیک هسته‌ای تا حد زیادی در نتیجه اکتشاف نوعی از گلوله‌های هسته‌ای بوده ، گر چه از بسیاری جهات مشابه با پرتونهای عادی است، ولی هیچ بار الکتریکی همراه آنها نیست. این پروتونهای بی‌بار ، یا بنابر اصطلاحی که بیشتر رواج دارد این نوترونها ، برای بمباران هسته عنوان گلوله کمال مطلوب را دارند، چه از آن جهت که فاقد بار الکتریکی بوده هیچ نیروی دافعه‌ای از طرف هسته‌های با بار الکتریکی زیاد بر آنها وارد نمی‌شود و می‌توانند به سهولت به ساختمان درونی هسته اتم نفوذ کنند.

    تاریخچه
    گر چه فرضیه مربوط به امکان وجود نوترونها در سال 1925 بوسیله رادرفورد بیان شده ، ولی دلیل وجود آنها را در سال 1932 همکار وی یعنی جیمز چادویک (James Chadwick) اثبات کرد. این شخص ثابت کرد که تشعشع مخصوصی که بر اثر بمباران با ذرات از بریلیوم صادر می‌شود عبارت است از ذراتی خنثی که جرم آنها در حدود جرم پروتون است. هسته‌ای که در نتیجه فعل و انفعال به دست می‌آید، همان هسته کربن متعارف است.






    چشمه تولید نوترون
    نوترونها را معمولا از راه تصادم دو دوترون یعنی دو هسته هیدروژن سنگین بدست می‌آورند. پس از آنها یونهای هیدروژن سنگین را در یکی از مولدهای جدید با پتانسیلی بالا وادار به حرکت با سرعت و شتاب زیاد کرده ، آنها را بر روی ماده‌ای مانند آب سنگین انداخته که در آن اتمهای هیدروژن سنگین در داخل مولکولها به یکدیگر متصل‌اند. در نتیجه تصادمهایی که رخ می‌دهد، عده زیادی نوترونهای سریع مطابق معادله زیر تشکیل می‌دهد:



    21D + 21D → 32He + 10n



    به این نکته باید اشاره کرد که چون نوترونها بار الکتریکی ندارند در ضمن عبور از هوا عمل یونش صورت نگرفته و به همین جهت در ضمن عبور از اتاق ابر اثر مرئی از آنها بر جای نمی‌ماند. مشاهده آنها معمولا از راه اثری است که از تصادم با ذرات هوایی که مستقیما در راه آنها قرار گرفته حاصل می‌شود.

    نتایج بمباران نوترون
    نوترونها به آسانی می‌توانند حتی در هسته‌های با بار الکتریکی زیاد ، نفوذ کرده و اثر تخریبی در داخل آنها داشته باشند. این آثار بیش از همه بوسیله فیزیکدان ایتالیایی انریکلو فرمی (Enrico Fermi) و همکاران او مورد پژوهش و مطالعه قرار گرفته است. در صورتی که سر و کار ما با عناصر سبکتر است. نفوذ یک نوترون غالبا با خارج شدن یک ذره آلفا یا یک پروتون همراه است. مانند این فعل و انفعال:



    147N + 10n → 115B + 42He

    که نشان دهنده تبدیل یافتن نیتروژن به بور و هلیوم است و یا:



    5626Fe + 10n → 5625Mn + 11H

    که تبدیل آهن را به منیزیم و هیدروژن نشان می‌دهد. در عناصر سنگینتر حصار پتانسیل که هسته اتم را احاطه کرده بلندتر است، و اگر چه این حصار مانع نفوذ نوترون به درون هسته نیست، ولی از خارج شدن اجزا باردار هسته جلوگیری می‌کند. در این حالت نوترونهایی که داخل هسته نفوذ می‌کنند، بایستی از انرژی موجود در خود به صورت تشعشعات مغناطیسی که تولید می‌شود خلاص شوند و به این ترتیب است که اشعه سخت گاما خارج می‌شود. مانند این فعل و انفعال:



    اشعه گاما + 19779Au + 10n → 19879Au



    که در آن عنصر سنگینتری از همان نوع طلا ساخته می‌شود. این طرز ساخته شدن ، ممکن است از عنصری که بمباران شده ، با تعدیل بار الکتریکی از طریق صدور یک الکترون صورت گیرد.






    منفجر ساختن هسته
    در فعل و انفعالات هسته‌ای که تا کنون مورد بحث قرار گرفتن ، اساس کار عبارت از آن بود که جز نسبتا بسیار کوچکی از ساختمان هسته (مانند ذره α یا پروتون یا نوترون) از آن خارج شود و حال اگر هسته یک اتم سنگین منجر شود و دو یا بیشتر پاره‌های تقریبا مساوی بدست آید.

    در زمستان سال 1939 این نوع شکسته شدن بوسیله دو فیزیکدان آلمانی به نامهای هان (O . Hahn) و مایتنر (Lise Meitner) مشاهده شد و دریافتند اتمهای اورانیوم که ناپایدارند، ممکن است بر اثر بمباران با یک دسته نوترون به دو پاره تقسیم شوند. یکی از دو پاره نماینده هسته باریوم و دیگری به احتمال قوی کریپتون. این نوع شکافته شدن هسته با آزاد شدن مقداری انرژی همراه است که صدها برابر انرژی آزاد شده در سایر فعل و انفعالات شناخته شده هسته‌ای است.

 

 

 

 

 

  1. انرژی همبستگی هسته


    مفاهیم ساختار اتمی و هسته‌ای این است که اتم مرکب از هسته و الکترونهایی ‏است که ‏آن را احاطه کرده‌اند و اینکه هسته از پروتون و نوترون ساخته شده است به این پرسش ‏‏اساسی می‌انجامد که:‏ آیا جرم یک اتم خنثی با مجموع جرمهای پروتونها ، نوترونها و الکترونهایی که آن اتم ‏خنثی را تشکیل ‏می‌دهند. برابر است یا نه؟‏ این پرسش را به دقت می‌توان پاسخ داد. زیرا جرم پروتون ، نوترون و الکترون و همچنین جرم‏های تقریبا ‏تمام اتمهای گوناگون معلوم هستند.




    منشأ انرژی همبستگی هسته
    در فیزیک یک اصل کلی است که می‌گوید: برای متلاشی کردن یک سیستم یا مجموعه پایدار ‏باید کار ‏انجام داد. مثلا اگر سیستمی از نوترونها و پروتونها ، که هسته اتم را ایجاد می‌کنند، پایدار باشد. برای از ‏هم سوا کردن آنها باید انرژی مصرف نمود.‏ جرم کلی یک هسته پایدار باید کمتر از مجموع جرمهای جداگانه نوترونها و پروتونهای تشکیل ‏دهنده آن ‏باشد. از طریق محاسبه و تجربه معین شده است که اختلافی بین مجموع جرم ‏نوکلئونهای هسته و جرم هسته ‏پایدار وجود دارد. این اختلاف جرم معادل انرژی هست که جهت ‏متلاشی کردن کامل هسته لازم است. این ‏انرژی موسوم به انرژی همبستگی اتم می‌باشد.‏

    محاسبه انرژی همبستگی هسته
    بررسی جرمهای اتمی شناخته شده نشان می‌دهد که برای هر نوع اتم ، جرم اتمی همواره ‏کمتر از ‏مجموع جرمهای ذرات تشکیل دهنده به حالت آزاد آنهاست. ساده‌ترین اتم که دست ‏کم شامل یک پروتون ، ‏یک نوترون و یک الکترون باشد دوتریم است. در این مورد جرمها عبارتند ‏از:‏



    جرم سکون یک پروتون = amu ‏1.007276‏‏
    جرم سکون یک نوترون = amu‏ 1.008665‏
    جرم سکون یک الکترون = amu‏ 0.000549‏
    جرم سکون ذرات تشکیل دهنده در حالت آزاد = amu‏ 2.016490‏
    جرم سکون اتم دوتریوم = 2.014102‏ amu‏
    تفاوت (‏Δm = 0.002388amu‏)‏





    تفاوت جرم سکون ، ‏Δm‏ ، ممکن است کوچک به نظر آید، لیکن به علت ضریب C2 در ‏رابطه ‏E = mC2 این تفاوت جرم با تفاوت انرژی قابل ملاحظه‌ای مطابقت دارد. بنابرین ‏تفاوت جرم (‏Δm) با تفاوت انرژی (‏ΔE‏) با رابطه ‏ΔE = ΔmC2 به هم مربوط می‌شوند. ‏یک ضریب تبدیل مناسب ‏برای تبدیل جرم اتمی (برحسب واحد جرم اتمی) به انرژی (برحسب مگا الکترون ‏ولت) عبارت ‏است از (‏amu = 93.1Mev‏).‏

    بنابرین اگر تشکیل یک اتم دوتریوم را به هنگام ترکیب یک پروتون و یک نوترون (و اتصال با ‏یک ‏الکترون) را در نظر بگیریم، در این فرآیند مقدار جرمی برابر با: ‏Mev = 1amu/931Mev x ‎‎0.002388 amu‏ 2.22 به هنگام ترکیب این سیستم از ذرات ترکیب شونده آن ، پیش از آن که به ‏صورت یک اتم ‏دوتریوم در آمده باشد، به اطراف تابیده است.‏ انرژی از دست رفته مورد نظر را که از محاسبه تفاوت در جرم سکون حاصل شده ، می‌توان با ‏نتیجه یک ‏آزمایش مستقیم مقایسه کرد. وقتی هیدروژن با نوترون بمباران می‌شود. یک نوترون ‏به صورت واکنش زیر ‏گیر می‌افتد:



    ‎10n + 11H → 21H + γ



    در این واکنش هیچگونه اجزای ذره‌ای که انرژی جنبشی زیادی داشته باشند، ایجاد ‏نمی‌شود. بنابراین جرمی ‏برابر ‏amu‏‏ ‎0.002388‎‏ که تفاوت سبکتر شدن ‏‎21H‏ از ‏‏10n + 11H است، بوسیله اشعه گاما ربوده می‌شود. ‏انرژی این اشعه از طریق آزمایش معین و معلوم شده ‏که ‏MeV‏ 22.2 یعنی درست همان مقدار پیشگویی شده ‏است.‏

    برهمکنش هسته دوتریوم با اشعه گاما
    واکنش معکوس ، یعنی واکنشی که در آن دوتریم با اشعه گاما بمباران می‌شود، نیز ‏بررسی شده‌است:‏

    اگر انرژی پرتوهای ‏اشعه‏ کمتر از ‏MeV ‏22.2 باشد، این واکنش صورت نمی‌گیرد. اما اگر ‏پرتوهای ‏V‏ با ‏انرژی ‏MeV ‏22.2 یا بیشتر بکار گرفته شوند، واکنش صورت می‌گیرد. یعنی ‏پروتون و نوترون از هم جدا ‏و آشکار پذیر می‌شوند.


    ‎21H + γ → 10n + 11H‎




    به دنبال گیر اندازی یک نوترون بوسیله ‏‎11H‏ ، انرژی در یک ‏‏اشعه گاما آزاد می‌شود. این انرژی (‏MeV‏ 22.2) انرژی اتصال دوترون نامیده می‌شود. ‏این انرژی را ‏می‌توان انرژی‌ دانست که وقتی یک پروتون و یک نوترون برای ایجاد یک ‏هسته باهم ترکیب می‌شود، آزاد ‏می‌گردد. برای حصول واکنش معکوس ‏‏(وقتی‎21H ‎‏ با اشعه ایکس بمباران ‏می‌شود) انرژی باید جذب ‏شود.


    بنابراین می‌توان چنین پنداشت که انرژی اتصال مقدار انرژی لازم برای شکستن ‏هسته به ذرات هسته‌ای ‏سازنده آن است. ‏
    انرژی هسته‌ای
    مفهوم انرژی هسته‌ای برای تمام مواردی که اجزایی ساده بوسیله نیرویی به هم ‏می‌پیوندند و یک سیستم ‏پیچیده بوجود می‌آورند، بکار می‌آید. مثلا زمین در مداری ‏به دور خورشید قرار گرفته و با جاذبه گرانشی ‏به آن متصل است و در این صورت برای ‏جدا شدن و گریز از خورشید باید مقداری انرژی جنبشی اضافی به ‏آن داده شود.

    در یک اتم هیدروژن ‏eV‏ ‏13 لازم است تا الکترون از قید هسته‌ای که با جاذبه الکتریکی ‏به آن اتصال ‏یافته خلاص شود. برعکس ، وقتی یک هسته ‏عریان‎11H ‎‏ الکترونی را گیر ‏می‌اندازد و به یک اتم هیدروژن ‏خنثای پایدار معمولی مبدل می‌شود. سیستم مقداری انرژی برابر با ‏eV‏ 13 ‏بوسیله ‏تابش از دست می‌دهد و این درست انرژی فوتون گسیل یافته‌ای است که در این ‏فرآیند یعنی ، فرآیند ‏گیراندازی الکترون ، مشاهده می‌شود. اما فقط انرژیهای اتصال ‏هسته‌ای آنقدر بزرگ‌ هستند که تفاوت جرم ‏مربوط به آنها قابل اندازه‌گیری می‌شود.‏
  1. راکتور هسته‌ای
    ---------------------------------------

    راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.

    تاریخچه
    اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.






    ساختمان راکتور
    با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.


    سوخت هسته‌ای
    سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

    در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.






    غلاف سوخت راکتور
    سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

    مواد کند کننده نوترون
    یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

    خنک کننده‌ها
    گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

    از مایعات و گازها به عنوان خنک کننده استفاده شده‌ است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.






    مواد کنترل کننده شکافت
    برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

    انواع راکتورها
    راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

    کاربردهای راکتورهای هسته‌ای
    راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.


    دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. پاسخ: فیزیك هسته ای

پلوتونيم

 

 


پلوتونیوم یک عنصر شمیایی رادیواکتیو و فلزی است که نماد آن Pu و عدد اتمی آن 94 میباشد. وزن اتمی این عنصر 244.06 بوده و چگالی آن 19.800 kg/m3 میباشد.

پلوتونیوم در سال 1940 توسط دکتر GlennT.Seaborg ، Edwin McMillan, Kennedy و Wahl از طریق بمباران دوترونی اورانیوم در سیکلوترون(شتاب دهنده ذرات مدور) Berkeley Radiation Laboratory دانشگاه کالیفرنیا برکلی کشف شد. اما این کشف تا مدتها سری باقی ماند. این عنصر با توجه به کشف سیاره پلوتو که درست بعد از نپتون کشف شد ،پلوتونیوم نام گرفت.(پلوتون در منظومه شمسی بعد از نپتون قرار دارد).

خصوصیات

این فلز ظاهری نقره ای رنگ دارد و هنگامی که اکسید میشود رنگش تا حدی به زرد تیره میگراید. اگر مقدار زیادی از پلوتونیوم در جایی جمع شودن به قدری گرم میشوند که نمی توان آن را لمس کرد و دلیل آن نیز ساتع کردن انرژی آلفا میباشد. مقادیر بیشتر گرمای لازم را برای جوشاندن آب به وجود می آورد. این فلز به سرعت در اسید هیدرویدیک یا اسید پرکلریک غلیظ ،حل میشود. این فلز شش حالت Allotropic با ساختارهای بلورین گوناگون از خود نشان میدهد که چگالی آنها از 16.00 تا 19.86 تغییر میکند.

ایزوتوپها

مهمترین ایزوتوپ پلوتونیوم Pu239 بوده که نیمه عمر آن 24200 سال میباشد. و به دلیل نیمه عمر کوتاه آن رد بسیار ناچیزی از پولوتونیوم به صورت طبیعی در معادن

یافت میشود. پلوتونیوم239 ، در رآکتورهای هسته ای از اورانیوم 238 ، و در مقیاسهای بالا تولید میشود.
ایزوتوپ پلوتونیوم 238 ساتع کننده اشعه آلفا میباشد که نیمه عمرش 87 سال است. این خصوصیات آن

موضوعات مرتبط: فیزیک دبیرستان، ،
برچسب‌ها:


.: Weblog Themes By Iran Skin :.

درباره وبلاگ

با سلام -این وبلاگ برای آشنایی دانش آموزان دبیرستان با سوالات امتحانی می باشد.همچنین دانش آموزان می توانند سوالات را حل کنند و در کلاس ارایه دهند.
آرشيو مطالب
مهر 1399
اسفند 1395 بهمن 1395 مهر 1395 آذر 1394 آبان 1394 مهر 1394 شهريور 1394 تير 1394 خرداد 1394 ارديبهشت 1394 فروردين 1394 اسفند 1393 بهمن 1393 دی 1393 آذر 1393 آبان 1393 مهر 1393 تير 1393 ارديبهشت 1393 فروردين 1393 اسفند 1392 بهمن 1392 دی 1392 آذر 1392 آبان 1392 مهر 1392 شهريور 1392 مرداد 1392 تير 1392 ارديبهشت 1392 فروردين 1392 اسفند 1391 بهمن 1391 آذر 1391 آبان 1391
امکانات وب

خبرنامه وب سایت: